A tetragonal switching model for ferroelectric materials
نویسندگان
چکیده
منابع مشابه
Tetragonal CH3NH3PbI3 is ferroelectric.
Halide perovskite (HaP) semiconductors are revolutionizing photovoltaic (PV) solar energy conversion by showing remarkable performance of solar cells made with HaPs, especially tetragonal methylammonium lead triiodide (MAPbI3). In particular, the low voltage loss of these cells implies a remarkably low recombination rate of photogenerated carriers. It was suggested that low recombination can be...
متن کاملToughening due to domain switching in single crystal ferroelectric materials
In this paper Mode I steady state crack growth in single crystal ferroelectric materials is investigated. Specifically, the fracture toughness enhancement due to domain switching near a steadily growing crack tip is analyzed. For this purpose, an incremental phenomenological constitutive law for single crystal ferroelectric materials is implemented within a finite element model to calculate the...
متن کاملA Stress-Dependent Hysteresis Model for Ferroelectric Materials
This paper addresses the development of homogenized energy models which characterize the ferroelastic switching mechanisms inherent to ferroelectric materials in a manner suitable for subsequent transducer and control design. In the first step of the development, we construct Helmholtz and Gibbs energy relations which quantify the potential and electrostatic energy associated with 90 and 180 di...
متن کاملA Free Energy Model for Hysteresis in Ferroelectric Materials
This paper provides a theory for quantifying the hysteresis and constitutive nonlinearities inherent to piezoceramic compounds through a combination of free energy analysis and stochastic homogenization techniques. In the first step of the model development, Helmholtz and Gibbs free energy relations are constructed at the lattice or domain level to quantify the relation between the field and po...
متن کاملA dynamic lattice model for heterogeneous materials
In this paper, the mechanical behavior of three-phase inhomogeneous materials is modeled using the meso-scale model with lattice beams for static and dynamic analyses. The Timoshenko beam theory is applied instead of the classical Euler-Bernoulli beam theory and the mechanical properties of lattice beam connection are derived based on the continuum medium using the non-local continuum theory. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2010
ISSN: 1617-7061
DOI: 10.1002/pamm.201010177